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The age of the Universe and the Hubble deceleration of galaxies depends upon the
average mass deunsity. The temperature of the electromagnetic background radiation de-
termines also the neutrino particle density. These empirical informations put an upper
limit on the rest masses of the neutrinos, which are more restrictive than the laboratory
values.

§ 1. Introduction

Our direct experimental information about the neutrino rest masses is
rather poor:

m,, < 60eV[1], m,, < 1.6MeV[2]. 1)

There is, however, a possibility to obtain more restrictive upper limits on these
masses from the empirical cosmology. The Universe is filled by a 2.7 °K black
body radiation, discovered by PENzias and WiLsoN in 1965 [3]. To detect
the corresponding neutrino background, produced at the time of the Big
Bang, would be a much harder job, since the direct neutrino interactions are
weak ones. On the other hand, the neutrinos may carry a considerable part of
the overall mass density of the Universe, consequently their gravity might
play an important role in the evolution of the Universe.

In the early stage of this evolution a high number of particle-antiparticle
pairs were in thermal equilibrium with the radiation field. As the temperature
decreased, all the particle pairs annihilated but the neutrinos. They found
themselves decoupled from the charged particles and photons, thus their
number did not change any more. The number of neutrinos must be enormous
even to-day as compared to the number of the photons and much higher than
the number of the charged atomic constituents. During the expansion of the
Universe the behaviour of massive and massless particles is quite different.
(In case of massive particles — e.g. atoms — the particle number is fixed, the
volume increases as R3, consequently the particle density goes with R™3 and
so does the energy density, too. In the case of massless particles — e.g. pho-
tons — the wavelength is proportional to R, the energy to R™3, consequently
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114 A. S. SZALAY and G. MARX

the energy density goes with R=4) Even a very tiny neutrino rest mass — if
there is any — might have a vast influence in shaping the face of our present
world. This offers us a way to learn the value of the neutrino rest mass from
actual astronomical observations.

The aim of the present paper is to investigate the influence of m, and
m,, on the evolution of the Universe and to put an upper limit on them from
the expansion deceleration ¢, and from the age t, of the Universe.

§ 2. Geometry of the Universe

An isotopic homogeneous model of the Universe will be assumed, which
may be described by the Robertson —Walker metric:
dr? 4 r2d9? 4 sin®*9dp?

ds? = c2dt® — R(t)? (LT krja) . (2)

The dimensionless parameter k is characteristic for the qualitative space-time
structure of the Universe:
k= —1 means an open space with hyperbolic geometry and with
infinite volume;
k=0 means a flat Euclidian space with infinite volume,
k = 41 means a closed space with spherical geometry and with finite
volume.
As the scale factor R(t) varies with time, all the lengths remain proportional
to it. (This produces the red shift of light and the recession of galaxies.) The
time dependence of R(t) is described by the Einstein equations, which take the
following from for the metric (2):

R c2 8nG

bl BTG LA 3
[R]+ e 3)
d d
£ (0R)+ P (R =0. 4
= (R?) + P (RY) @)

Here p means the mass density and P the pressure of matter. These two equa-
tions lead to a singularity R = 0. (It is convenient to choose t = 0 at the
singular moment.) During the evolution of the Universe the time dependence
of R(t) may have three different forms (Fig. 1):

If k= —1, the expansion slows down all the time,but without stopping.

If k=0, the expansion slows down and stops at t = 4 «

If k = —1, the expansion slows down, stops, then turns over to con-
traction.
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t

Fig. 1. The time-dependence of R() in terms of the age of the Universe. The curves a, b, ¢
correspond to the values of k= —1, 0, 1. (Both scales are nonlinear.)

The present state (t = t,) of the expansion is usually characterized by two
observable quantities: by the Hubble parameter H; and by the deceleration
parameter g, [4]:

Hy = ) _ 53 1 5 kmnfs Mpe = [(18.4 £ 2) - 10° years] S, . (5)

R(z,)
o = AM=O.94:I:O,4, (6)
R(t,)*
k, H, and q, are related to each other by the equation
c? 8nG
This shows, that g, > 0.5 means k= + 1, ¢, < 0.5 means k = — 1. The

observed value (6) suggests evidently a closed Universe with k = + 1. As it
can be seen from the relation

3

¢= 8xG

the mean values H, = 53 km/sMpc and g, = 0.94 give a mass density p(t,) =
= 1072 g/cm® for our present Universe, which is considerably higher than
the optically observed stellar mass density p, = 0.03 - 1072% g/cm?. (The latter
value alone would give an open universe with k = — 1.) These numbers show
that a considerable neutrino contribution cannot be ruled out by the present
astronomical evidence.
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§ 3. Thermodynamics in the Lepton Era

After the annihilation of the hadrons the matter was present in the form
of photons, leptons and nucleons. The number of the surviving nucleons was
determined by the conservation of the baryonic charge, the number of leptons
and photons by the temperature. This has the consequence, that in a certain
period of the cosmological evolution, in the temperature range m,e2 >ET >m,c?
the most abundant particles were the leptons. In this Lepton Era the den-
sity was still so high that collisions were rather frequent. All the particles

Vset e Wt W Ve, Ve, Vs ¥,
were in thermal equilibrium, their energy densities were nearly equal. (The
only differences were caused by the spin degrees of freedom and the different
statistics.) If one makes the assumption, more pessimistic from the point of
view of the neutrinos that the right-handed neutrino states and left-handed
antineutrino states, appearing as a consequence of m, 7= 0, have not had time
to be filled up, one gets

Qete= = Quin— = %ey, Ouise = Cujp, = -;—ey- (7

The leptons are coupled together by the electromagnetic and weak interactions:
et +e-=2y=ut 4u,

et +e 29, +79,, w2y, 45, e+ ut 2y, + 9, ete. (8)

As the temperature drops below the value kT = m,c? the muons start to
disappear, their energy and entropy flows over into the lighter particles. The
g-neutrinos do not collide with muons any more, they do not have energy
enough to produce newer muons. They become decoupled from the rest of the
particles. (To be more precise, knowing the cross sections from the theory of
weak interactions, one can calculate the average time between two successive
interactions. One can speak about decoupling, when this time becomes longer
than the lifetime of the Universe. The average interaction time depends upon
the temperature very sensitively. The detailed calculation of the decoupling
temperature will be given in the Appendix.)

The decoupling temperature of the electron-neutrinos can be obtained
on the same line. So the four characteristic temperatures of the Lepton Era
turn out numerically as follows:

annihilation of p*u~ at T, = 120 - 1010°K, )
decoupling of .y, at T, =12- 101°°K, (10)
decoupling of w5, at T, = 1.8- 101°°K, (11)
annihilation of ete~ at T, = 0.59 - 101°°K., (12)
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LIMIT ON THE REST MASSES 117

The number of neutrinos froze in at decoupling, the energy of an indi-
vidual particle decreases as a consequence of the expansion of space. The
entropy and energy of muons and electron pairs flows into that of the photons
during the annihilation periods. The entropy flow is shown by Fig. 2.
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Fig. 2. The entropy flow in the Universe between the different particles. When different
channels touch each other, they are in equilibrium

§ 4. Calculation of the density and pressure functions

We are going to start the calculation after the annihilation of the muons,
at the decoupling temperature of the y-neutrinos (Tv“). At this temperature the
y-neutrinos are still in equilibrium with the other components. From this
peint it is easy to follow the life story of all the particles exactly.

Photons: The photon distribution is given by Planck’s law. The energy
density and pressure are given by the Stefan— Boltzmann-formula:

o,=aT, P,=—g, a=1569-10%erg/cm?°K¢  (13)

The wave-length is changing proportionally to the scale factor R, consequently
according to Wien’s displacement law the temperature depends on R on a
very simple way:

RT = const. (14)

Electrons: They obey the Fermi statistics. Since in the Lepton Era the
abundancy of electron pairs was much higher than that of the protons, the
chemical potential may be taken zero. At high temperatures one must use
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relativistic energies, ¢ = (p® + m2)1/2. Consequently,
_ptdp
1 + e®kT :

Qete— =

With the new variables x and 6, defined by the relations »
x=mc% kT, &=xcoshf, p=axsinhf, (15)
the integral can be given in a form more convenient for numerical computa-

tions [4]:

?

e s h2 2
Oers- = 167 ( n;:c ,2 mech sinh? 6 cosh? 0
0

1 + exp (x cosh )

167 ( m.c ]3 2 J“" sinh* 6
—_— mc
3 h o 1 exp(xcoshf)

Pete— =

Let us define the following functions:

d do ® )
_ — W(_1"HK s 16
fi j e e S UK (16)

1 :J‘“‘ sinh? 6 d6 é, (— 1) K, (nx) 9 (17)

1 4- exp (x cosh 8) ;= nx
o« : 4 ©
£ :J‘ sinh* 6d0 (— 1+t K,(nx) . (18)
o 1+ exp(xcoshb) ;3 (nx)?

(K, is the modified Bessel function of rank r.) So one has obtained a very
rapidly converging series expansion. In order to reach an accuracy of 1074
it is enough to sum up six terms. The density and pressure functions can be
evaluated in terms of f, f}, fo:

Qere~ = 2a,(f1 + f2) » (19)

2
Pete- = “e © fas (20)

s
a, = 8n (%] mc? = 1.44-10% erg/cm?.
At high temperatures (¢T > m.c?) the clectrons behave like radiation, i.e.

1 1
Qete— == Z Oy Petre— = ?Qe+e" . (21)

In the neighbourhood of kT = m,c? the energy density and pressure drops very
fast, the energy and entropy flows over into the photon component. g,+,-/g,
and p,+,-/py are shown in terms of the temperature on Fig. 3.
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Fig. 3. The temperature-dependence of Pete— [Py, pete~fpy and —dlnR/dIn T
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Fig. 4. The R-dependence of the different densities. The breaking point corresponds to m», =

= 50 €V, approximately. The crossing point of the curves g and g, determines the end of the
expansion of the Universe
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Electron-neutrinos: In the case of vanishing rest mass one has thermal
distribution before decoupling:

QV, = % aT47 le = %‘eﬁe‘) if T > q"’l' (22)

In the moment of decoupling the temperature is T, , the scale factor is R, .
From this point on each neutrino looses energy via the Hubble shift, according
to the law p ~ 271 ~ R~1. The R dependence of o and p is radiation-type:

7 R, |4 1
vy = —_—aTéa ) ve — . v, if T < T”o
ool () p= e
One sees that the formulas (22) can be used in the whole region.

Muon-neutrinos: We are interested in the possibility that p-neutrinos
may have a nonvanishing rest mass, and this makes life harder. At the moment
of the decoupling (TV“, R, ) there is still an equilibrium distribution:

8 %d
) T e I;p21/2kT ' @)

+ekp[(P + mi’p) / "p.]

After having been decoupled, the number of neutrinos does not change any

longer. The momentum of each individual particle will decrease proportionally
to R7L,

R
2 ”A»,
r=p[

consequently the total energy density may be obtained by integrating
g = (p*+ m.f‘u)”2 over the distribution (23):

8x ™ o [ Ruy )2 )
T T
), R 1+exp[(p®+ m3 )Y/ /kT,,“]
The pressure can be computed from the formula as p = — dE/dV. Using the
same substitutions as in the case of electrons, writing\
12
&(R) = [1 i f”_“r sinh? 0}
R
one gets the energy density and pressure:
3 4 o inh?2
G = [Rv“’ [mmJ aef «(R) sinh? 0 cosh 0d0 ’ (24)
R m, 0 1 - exp (x cosh 6)
R,\3 (M, \ta, (* cosh 0 sinht 0d6
P”y."y. = 1 T J = . (25)
R M,) 3 Jy €R) 1+ exp(xcosh0)
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LIMIT ON THE REST MASSES 121

These expressions can be integrated numerically by conventional methods.
(No series expansion is allowed, because the value of R changes 11 orders of
magnitude.)

If one supposes a nonvanishing rest mass also for the electron neutrinos,
they must be treated in the same way as the muon neutrinos.

If the right-handed neutrino states and left-handed antineutrino states
have had time encugh to be filled up, the e-neutrino and y-neutrino density
and pressure values must be doubled.

Knowing the energy density and pressure in terms of R, one can start
to integrate the Einstein equations (3), (4), which give us the history of the
expansion.

§ 5. Integration of the Einstein equations

If o(R) is known from § 4, one can integrate the equation (3), if the initial
conditions are known. Let us start the integration at the moment, when T cools
down to T, and the p-neutrinos become decoupled. Since this is well within
1 second after the Big Bang, we may put ¢ = 0. Let us choose R(e) arbitrarily.
(The neutrino rest masses m, and m,, are other free parameters in the calcula-
tion.)

The computer calculation of R(t) is made to stop, when the photon
temperature T,(t) reaches its present value 2.7 °K. The corresponding t = ¢,
is the age of the Universe. From the R(#) function one can obtain the actual
values of H,and g,. In this way to every choice of R(0), m, and m,, one obtains
definite values for t,, H and g,. If the latter numbers are known empirically,
one can find the correct values of R(o), m,, and M, In this way the neutrino
rest masses are available from real astronomical observations.

In the actual computation is advantageous to separate the photon-
electron-component g, from the neutrino component g,. The former are always
sticked together by the electromagnetic interaction.

From the Einstein equations (3), (4) it follows
do 4 (R

. \E] (P +o).

The left-hand side can be written as follows:

do do dInT do dlnR
d dlnT dt dlnR dt
After some simple tricks one arrives to the relation
do, dln R
—— = -3 —_ 26
dln T (Pl“i‘Ql)me (26)
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By making use of the results of § 4, one can write this in the following form:

dinR _ 1_%.f0+2f1

dlaT 3  p +o

Since in the adiabatic equation of state of the radiation field dIn R/dIn T =
= — 1, the first term of the right-hand side describes the adiabatic cooling
of radiation, caused by the expansion, the second term describes the influence
of pair annihilation on the radiation. This entropy transition is important only
around the temperature T, (Fig. 3).

By taking this remark into account, Eq. (26) can be integrated after
some simple substitutions. The integration constant can be obtained by con-
sidering that the electron in high temperature limit must behave radiation-like.

_ R,,#T,,p ' 11/3aT* ]1/3 )
T P + 0

This gives the scale factor R at the moment when the temperature of the

R 27)

universe is T

The only open question left is the time dependence of the expansion.
This is described by the Einstein equation (3). For the actual work it is con-
venient to eliminate R from this differential equation with the help of the
formula (27), so one gets a differential equation for the function

_ 8nG c? 2
dinT _dInT dlnR:*t[TQ*F] . 8)
dln: dlnR dlnt 1_]_%]"0—0—2]‘1
3 pita

This equation is integrated by computer.

The density runs proportional to R™* first (radiation-type Universe), as
is shown in Fig. 5. At the temperature kT = m,, c® there is a breaking point
on the density curve: the slope changes, because the density starts to behave
like R—3 (rest mass-type Universe). If m,, is larger than 3 —4 eV, this change
happens before the protons became dominating. In thie case the presence of
the atoms may be neglected in discussing the cosmological evolution of the
Universe. The time corresponding to the breaking point which is important
for the character of the expansion, depends sensitively on m, . This is the
explanation, why the observable astronomical values H,, q,, t, depend on the
neutrino m ass so sensitively.

§ 6. Conclusion

In a previous calculation GERSBTEIN and ZEL'DOVICH obtained the
estimation

m,, < 200 eV
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Fig. 5. The graph of Hy, g, and ¢, in terms of m», and R,, the. early radius of the Universe.

The solid curves 1, 2, 3 correspond to the values H, = 48, 53, 58 km/s.Mpc. The dashed lines

4, 5 correspond to g, = 1.34 and 0.94. The dotted-dashed lines 6, 7 correspond to the values
to =12 and 11 Gyears, respectively

from the age of the moon rocks (t,<C 4.5 + 10? years) in their pioneering work [6].
The present authors made use of the observed Hubble parameter (5) and from
the conservative deceleration limit g, < 2 to deduce a sharper limit on the
neutrino mass m,, [7]:

m,, < 140 eV. (29)

Later CowsIk and McCLELLAND used the optimistic value ¢, = 0.94 and they
concluded [8] in

Zm, < 66 €V. (30)

In the present fluid state of the empirical cosmology it may be a better tactics
to leave the choice from observational data to the reader. We summarize the
results of our calculations in Figs 5, 6. Here the values of t,, H,and ¢, have
been plotted in terms of m, and R(0). A more informative diagram is shown
in Fig. 7, where t; and g, are plotted for different possible values of H, and m, .
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Fig. 6. Same as Fig. 5, only the range of mv, is different. The crossing points, giving the limits

on the v, rest mass can be seen on this figure. The scale on the right hand side shows the values

of R (the radius of the Universe now). The units are 10?® cm-s. On the upper scale the energy

density of the Universe is given. The solid curves 1, 2, 3 correspond to Hy, = 48, 53 and 58

km/s.Mpe, the dashed lines 4,5 correspond to go = 1.34 and 0.94, the dotted-dashed lines
correspond to ¢, = 12,11,10 Gy

In these calculations the most pessimistic assumptions were used: The
evolution of the Universe was too fast to fill up the right-handed v and left-
handed ¥ states, the v, rest mass equals zero, so the whole cosmological effect
is carried by the v, rest mass. If one drops these assumptions, on the horizontal
axis in Figs 5, 6, 7, one can write the sum of the neutrino rest masses, summed
over all the neutrino degrees of freedom, i.e. 2m, = 4m, 4 4m, .

- . . . ¢ ’L

It is shown in these Figures, that the conclusion

m,, < 2Xm, <90 eV (31)

is convincing even under moderate use of the data borrowed from the empiricar
cosmology. If we accept the nuclear age of our Galaxy [9]

tg = (12 + 2) - 10° years, (32)
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Fig. 7. Same as Figs.5 and 6, only the R, dependence is eliminated. The parameters g, and
t, are plotted in terms of my, and H,.The possible values of the parameters are laying within
the area, bounded by the lines Hy, = 48, H, = 58 (km/s.Mpc), g, = 1.34 and ¢, = 10 Gy

one can put a more restrictive upper limit
m,, < 2Zm, < 64 eV. (33)

If one had m, == m, and if all the eight » states were filled up, one would

v,

arrive at the optimistic conclusion
m, <22 eV (or 16 eV, respectively).

These values are by four or five orders of magnitude more accurate, than the
laboratory limit (1). (The inequalities might turn into equalities, if we were
able to know definitely that neutrinos are the only dominating form of matter
and if the astronomical data were free from any systematic error. In this case
one could say that the dominating form of matter are neutrinos, practically
at rest.)

Another, even more daring idea to measure the neutrino rest mass by
watching the sky is based on the “missing mass” phenomenon in big clusters
of galaxies, especially in the Coma cluster. This invisible mass, which stabilizes
the cluster, may be interpreted as a neutrino concentration produced by the
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gravitational pull of the cluster [10]. The value of the neutrino rest mass
estimated in this way turns out to be comparable — or even better — than
that given in this paper. The idea of a tiny nonvanishing neutrino rest mass,
suggested by astronomy, deserves further investigations.

Appendix
Calculation of the decoupling temperature

The abundancy of the neutrino-lepton interactions can be characterized
by the average interaction time. This quantity is by definition

T (T) = — o2 (34)
(nnolol)
n, and n; are the number densities of neutrinos and leptons, respectively.
o is the cross section, | v | is the relative velocity. 7,/ is extremely sensitive to
the actual value of the temperature, it increases rapidly as temperature
decreases.

The decoupling temperature: is by definition the temperature, below which
the neutrinos practically do not interact with other particles any more. This
happens when the average interaction time becomes equal to the age of the
Universe:

7(T) = (T). (35)

Such a sharp decoupling is an idealisation of the process, of course, but it is
a good approximation, since the interaction time increases with the temperature
very rapidly.

The reaction v, - e — e 4 », was studied by J. Bamcaiws [11] and
T. DE GRAAF [12], they concluded in the average interaction time

T, = 7105 T3 sec (36)

(Ty denotes the temperature in 10° °K units.)
The reaction et -+ e~ = v, + v, was considered by H. Y. Carv [13].

The average interaction time is

t,, = 1.5-10¢ Ty % sec . 37)
The relation between the temperature and the age of the Universe is
t =102 Tg?sec. (38)

The decoupling temperature for the p-neutrinos, obtained from the first
(ve + e — e + v) reaction, according to equation (35) is

T, = 1.8 - 101°K. (39)
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This is higher, than the annihilation temperature of the electrons,

T, = 5.9 - 10°°K. (40)

The similar reactions for the y-neutrinos are
[l el i SRS (41)
pt +um 2y, .

Fig. 8. The graph of the process e - v, — v, ;- e

The average interaction time for the first reaction [12]

6
7, = 7.5Tg "% exp [ 122 ] sec . (42)
9
The corresponding decoupling temperature is
T, = 1.2 - 10" °K. (43)

v
(The p annihilation temperature is T, = 1.2 - 102°K.)
There is a possibility, however, that the reaction

v, +e—e+ v,

might play an important role, since below the y annihilation temperature the
number density of electrons is much higher, than the number density of
muons. The corresponding graph is shown in Fig. 8; the y-neutrino can be
scattered by electrons through its electromagnetic form factor [14].

eG 1 u(»)

it F(g2)?
V2 1222 () (2m)32

{1~ o+ 2 ()

<vleellv;’L> =

where

A2 5 11 ¢

— A =300 Gev,
M2 6 30 M:

F(g) =1n

k4

the cut-off parameter; m, = 106 MeV, the muon rest mass; ¢ = p, — p,,
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the transferred momenta; M is the v, rest mass. After some calculations one
gets

do ‘G F(¢?)2 1 . 2
— =" . = (S — 2 — M2 (S—pE— M2 - 2mi(2M —1)} .
dQ 18 (2a%) 45 {S—n FHE—# ) ( &

In order to determine the average interaction time, we have to integrate the
following expression numerically:

nmio | o[> = B [ 0] 5742 f fdpdped(eos), (44)

where f, and f, are the statistical distribution functions of the neutrinos and
electrons. After the separation of some constant factors this expression can
be written in the following form:

(nmeo | v > = 2.35 - 10I(T). (45)

Here X{T) is a numerically calculable dimensionless function, depending on
the temperature only.
The mean value of n, is

(n,) = 4.164-10% T%2cm=3,

consequently
3/2
e —Se2_qa69.101m T (46)
<nvni0 | v I> I(T)

After some numerical computation the decoupling temperature obtained
from this reaction (v, + e¢ — e 4 v,) turns out to be T, , = 4.1 - 1011 °K, which
is higher, than the decoupling temperature of the v, + u— p 4 », reaction
(Fig. 9).

3
log t [sec]

s
I
Il
1
}
t
i
1
1

T

T T T
107 4ixio" 10" 10"
Fig. 9. Determination of the decoupling temperature from the average interaction time of
the reaction e + v, — v, + e. t(T) is the age of the Universe, Tyue (T') the average interaction
time, both depending on the temperature only. Their crossing point determines the decoupling
temperature: Ty,e= 4.1 - 10 °K
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Another value of the decoupling temperatures can be calculated in Wein-
berg’s model of weak and electromagnetic interactions. The v, 4 e — e 4 %,
reaction has been considered by B. W. LEE et al. [15].

G
V2
By taking this into account, we get a decoupling temperature somewhat
lower, about

3z

T, +e—>etv,)=1 o

[ vt = ] et — 2]

TW =3-101°K.

“P_‘
So we may conclude by saying that the decoupling of y-neutrinos from the
rest of particles takes place somewhere around the temperature

T, =1.2-10"°K.

L

The uncertainty in the value of the decoupling temperature has a small
influence on the expansion as a whole, since about the time of decoupling there
are no large entropy exchanges between the other particles either, and on the
other hand the decoupled neutrino rest masses are negligible, so the adiabatic
cooling and the Hubble shift of the individual particles produce the same
change.
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